#SpaceXCRS3

http://www.universetoday.com/110069/historic-spacex-landing-leg-rocket-and-dragon-bound-for-station-check-fires-engines-at-t-minus-1-week/

Historic SpaceX Landing Leg Rocket and Dragon Bound for Station Check Fires Engines at T Minus 1 Week

by KEN KREMER on MARCH 9, 2014

Want to stay on top of all the space news? Follow @universetoday on Twitter

An upgraded SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS is slated to launch on March 16, 2014 from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com

An upgraded SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS is slated to launch on March 16, 2014 from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

The historic blast off of the first SpaceX rocket equipped with ‘landing legs’ and also carrying a private Dragon cargo vessel bound for the Space Station is now slated for March 16 following a short and “successful” hot fire check test of the first stage engines on Saturday, March 8.

It’s T Minus 1 week to lift off !

The brief two second ignition of all nine upgraded Merlin 1D engines powering the first stage of SpaceX’s next generation, commercial Falcon 9 rocket at the end of a simulated countdown is a key test required to clear the way for next Sunday’s planned night time lift off at 4:41 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

“Falcon 9 and Dragon conducted a successful static fire test in advance of next week’s CRS-3 launch to station!” SpaceX announced today.

The primary goal of the unmanned SpaceX CRS-3 mission is to deliver over 5000 pounds of science experiments, gear and supplies loaded inside Dragon to the six person crew living and working aboard the International Space Station (ISS) flying in low Earth orbitunder NASA’s Commercial Resupply Services (CRS) contract.

“In this final major preflight test, Falcon 9’s 9 first-stage engines were ignited for 2 seconds while the vehicle was held down to the pad,” said SpaceX.

All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for Mar 16 launch.  Credit: SpaceX/Elon Musk

All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for Mar 16 launch. Credit: SpaceX/Elon Musk

The static hot firing is a full up assessment of the rocket, engines, propellant loading and countdown procedures leading to a launch. The engines typically fire for a barely a few seconds.

SpaceX engineers will evaluate the engine firing to ensure all systems are ready for launch.

This commercial Falcon 9 rocket is equipped for the first time with a quartet of landing legs, Elon Musk, the company’s founder and CEO, announced recently as outlined in my story – here.

The attachment of landing legs to the first stage of SpaceX’s next-generation Falcon 9 rocket counts as a major step towards the firm’s future goal of building a fully reusable rocket.

The eventual goal is to accomplish a successful first stage touchdown by the landing legs on solid ground back at Cape Canaveral, Florida.

For this Falcon 9 flight, the rocket will sprout legs for a controlled soft landing in the Atlantic Ocean guided by SpaceX engineers.

Extensive work and testing remains to develop and refine the technology before a land landing will be attempted by the company.

“F9 will continue to land in the ocean until we prove precision control from hypersonic thru subsonic regimes,” Musk says.

1st stage of SpaceX Falcon 9 rocket equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk

1st stage of SpaceX Falcon 9 rocket equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk
SpaceX hopes the incorporation of landing legs will one day lead to cheaper, reusable boosters that can be manufactured at vastly reduced cost.

The March 16 launch will be the fourth overall for the next generation Falcon 9 rocket, but the first one capped with a Dragon and heading to the massive orbital lab complex.

Falcon 9 and Dragon static fire test on March 8, 2014. Credit: SpaceX

Falcon 9 and Dragon static fire test on March 8, 2014. Credit: SpaceX

Three prior launches of the more powerful Falcon 9 lofting commercial telecom satellites in September and December 2013 and January 2014 were all successful and paved the way for SpaceX’s new mission to the ISS.

And this Dragon is loaded with the heaviest manifest yet.

The research cargo includes 100 protein crystal experiments that will allow scientists to observe the growth of crystals in zero-G.

In the absence of gravity, the crystals will hopefully grow to much larger sizes than here on Earth and afford scientists new insights into designing and developing new drugs and pesticides.

SpaceX is under contract to NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

To date SpaceX has completed two operational cargo resupply missions. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.

If the launch takes place as planned on March 16, Dragon will rendezvous and dock at the Earth facing port on the station’s Harmony module, after a two day orbital chase, on March 18.

The Harmony port was recently vacated by the Orbital Sciences built Cygnus cargo spacecraft to make way for Dragon.

Both the Dragon and Cygnus resupply spacecraft were privately developed with seed money from NASA in a public-private partnership in order to restore the cargo up mass capability the US completely lost following the retirement of NASA’s space shuttle orbiters in 2011.

The Dragon docking will take place a few days after Monday’s (March 10) scheduled departure of three crew members aboard a Russian Soyuz capsule.

Watch the Soyuz leave live on NASA TV.

The departure of Russian cosmonauts Oleg Kotov and Sergey Ryazanskiy along with NASA astronauts Mike Hopkins marks the end of Expedition 38 and the beginning of Expedition 39.

It also leaves only a three person crew on board to greet the Dragon.

The Soyuz return to Earth comes amidst the ongoing Crimean crisis as tensions continue to flare between Russian, Ukraine and the West.

American and station partner astronauts are 100% dependent on Russia’s three seat Soyuz capsule and rocket for rides to the ISS and back.

Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA

Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA

Command of the station was passed today from Oleg Kotov to the Japan Aerospace Exploration Agency astronaut Koichi Wakata.

With the start of Expedition 39, Wakata thus becomes the first Japanese astronaut to command the ISS.

Wakata and NASA astronaut Rick Mastracchio with use the stations Canadarm 2 to grapple and berth Dragon to its docking port.

SpaceX Falcon 9/Dragon  CRS-3 mission patch. Credit: SpaceX

SpaceX Falcon 9/Dragon CRS-3 mission patch. Credit: SpaceX

Dragon is due to stay at station for about three weeks until April 17.

Then it will undock and set course for a parachute assisted splash down in the Pacific Ocean off the coast of Baja California.

For the return to Earth, Dragon will be packed with more than 3,500 pounds of highly valuable experiment samples accumulated from the crews onboard research as well as assorted equipment and no longer need items.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news. Learn more at Ken’s upcoming presentations at the NEAF astro/space convention on April 12/13.

And watch for Ken’s upcoming SpaceX launch coverage at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

Read more: http://www.universetoday.com/110069/historic-spacex-landing-leg-rocket-and-dragon-bound-for-station-check-fires-engines-at-t-minus-1-week/#ixzz2vXsuDNGY

11:42:40 PM Monday, March 10, 2014

http://www.nasa.gov/mission_pages/station/research/news/opals_lasercom/index.html#.Ux3c-ThwtUo

International Space Station to Beam Video via Laser Back to Earth

March 10, 2014

An artist’s rendering shows the Optical Payload for Lasercomm Science (OPALS).

Image Credit: 

OPALS

The Optical Payload for Lasercomm Science (OPALS) instrument is hoisted onto a shipping pallet for transfer to Kennedy Space Center in Florida. From there it will launch to the International Space Station.

Image Credit: 

NASA

What’s more interesting than videos of cats chasing laser beams over the kitchen floor? How about videos sent OVER laser beams from NASA’s International Space Station back to Earth?

A team of about 20 working at NASA’s Jet Propulsion Lab in Pasadena, Calif., through the lab’s Phaeton early-career-hire program, led the development of the Optical Payload for Lasercomm Science (OPALS) investigation, which is preparing for a March 16 launch to the International Space Station aboard the SpaceX-3 mission. The goal? NASA’s first optical communication experiment on the orbital laboratory.

Scientific instruments used in space missions increasingly require higher communication rates to transmit gathered data back to Earth or to support high-data-rate applications, like high-definition video streams. Optical communications—also referred to as “lasercom”—is an emerging technology where data is sent via laser beams. This offers the promise of much higher data rates than what is achievable with current radio frequency (RF) transmissions and has the advantage that it operates in a frequency band that is currently unregulated by the Federal Communications Commission.

“Optical communications has the potential to be a game-changer,” said mission manager Matt Abrahamson. “Right now, many of our deep space missions communicate at 200 to 400 kilobits per second.” OPALS will demonstrate up to 50 megabits per second and future deep space optical communication systems will provide over one gigabits per second from Mars.

“It’s like upgrading from dial-up to DSL,” added project systems engineerBogdan Oaida. “Our ability to generate data has greatly outpaced our ability to downlink it. Imagine trying to download a movie at home over dial-up. It’s essentially the same problem in space, whether we’re talking about low-Earth orbit or deep space.”

OPALS is scheduled to launch aboard a SpaceX Falcon 9 rocket, part of a cargo resupply mission to the space station. The payload will be inside the Dragon cargo spacecraft. Once deployed, OPALS will be conducting transmission tests for a period of nearly three months, with the possibility of a longer mission. After the Dragon capsule docks with the station, OPALS will be robotically extracted from the trunk of the Dragon, and then manipulated by a robotic arm for positioning on the station’s exterior. It is the first investigation developed at JPL to launch on SpaceX’s Falcon rocket.

The technology demo was conceived, developed, built and tested at JPL by engineers in the early stage of their careers in order to gain experience building space hardware and developing an end-to-end communication system. The system uses primarily commercial off-the-shelf hardware and encloses electronics in a pressurized container. “We were not as constrained by mass, volume or power on this mission as we were by cost,” said Abrahamson, and this approach allowed a lower cost development on an efficient schedule.

As the space station orbits Earth, a ground telescope tracks it and transmits a laser beacon to the OPALS. While maintaining lock on the uplink beacon, the orbiting instrument’s flight system will downlink a modulated laser beam with a formatted video. Each demonstration, or test, will last approximately 100 seconds as the station instrument and ground telescope maintain line of sight. It will be used to study pointing, acquisition and tracking of the very tightly focused laser beams, taking into account the movement of the space station, and to study the characteristics of optical links through Earth’s atmosphere. NASA will also use OPALS to educate and train personnel in the operation of optical communication systems.

The success of OPALS will provide increased impetus for operational optical communications in NASA missions. The space station is a prime target for multi-gigabit per second optical links. Fast laser communications between Earth and spacecraft like the station or the Mars Curiosity rover would enhance their connection to engineers and scientists on the ground as well as to the public.

OPALS is a partnership between NASA’s Jet Propulsion Laboratory in Pasadena, Calif.; the International Space Station Program based at Johnson Space Center in Houston; Kennedy Space Center in Florida; Marshall Space Flight Center in Huntsville, Ala., and the Advanced Exploration Systems Division at NASA Headquarters in Washington.

David Israel & Mark Whalen
NASA’s Jet Propulsion Laboratory

2:32:15 AM Tuesday, March 11, 2014

http://www.nasa.gov/content/space-communications-testbed-successfully-validated-in-space-as-a-multi-frequency-global/#.Ux4EozhwtUo

Space Communications Testbed Successfully Validated in Space as a Multi-frequency Global Navigation Satellite System Receiver

March 7, 2014

SCaN Testbed onboard the International Space Station

NASA’s Space Communications and Navigation (SCaN) Testbed now is the world’s first flight-validated, in-space U.S. GPS-European Galileo Global Navigation Satellite System (GNSS) receiver. This achievement and flight validation of GNSS signal reception in the space environment enhances GNSS interoperability while enabling more precise and robust orbital predictions, more diverse multi-frequency GNSS capabilities and improved applications such as on-board autonomous spacecraft operations and scientific measurements.

The SCaN Testbed is an advanced, integrated communications laboratory facility that uses a new generation of software-defined radio (SDR) technology to allow researchers to develop, test and demonstrate advanced communications, networking and navigation technologies in space. This SDR technology is based on a new NASA standard – the space telecommunications radio standard (STRS) – that enables radio applications to be changed simply by altering the software. NASA’s SCaN Program has developed the STRS architecture standard for SDR use in space- and ground-based platforms. This architecture standard provides commonality among radio developers to provide enhanced capability and services while reducing mission and programmatic risk. The cost savings and efficiency of this new technology will improve NASA’s data communications in the future. The SCaN Testbed also will help programs, technology developers and mission planners understand how SDRs will be used in future missions.

The ability to track signals from multiple GNSS receivers will enable NASA to improve both space operations and science missions that benefit society as a whole, ranging from better observation of Earth for more precise weather forecasting, sea level height measurements and climate change monitoring. It also will assist in improving our understanding of Earth’s crustal movements and allow advanced tsunami warnings.

This achievement resulted from a “science-of-opportunity” effort, supported by multiple NASA centers, to use the Testbed’s ability to process space-based navigation signals in addition to those of the U.S. GPS system. The SCaN Testbed aboard the International Space Station successfully recorded a navigation signal from the European Galileo satellite constellation and the U.S. GPS constellation at the same time. Signal reception then was successfully correlated to both a Galileo satellite and GPS signal by post-processing data recorded by the SCaN Testbed. The Testbed now is helping pave the way for greater use of international GNSS signals, validate the new modernized GPS signals and support future public and private sector users around the world and beyond Earth.

This reconfigurable laboratory in orbit provides broad participation to NASA, industry, academia and other government agencies to develop and execute experiments on the SCaN Testbed. These experiments will contribute data to the STRS repository and will enable future hardware platforms to use common, reusable software modules to reduce development time and costs. NASA continues to solicit proposals to participate in the development, integration and execution in orbit of research and technology experiments and demonstrations using the Testbed. The first users outside NASA are preparing to validate experiments on the SCaN Testbed, with two announcements of opportunity being prepared for release. The SCaN Testbed Experiment Opportunity invites industry and other government agencies to enter into Space Act Agreements with NASA to use the space station’s SCaN platform. The SCaN Testbed Cooperative Agreement Notice invites academia to develop proposals to use the orbiting laboratory’s SCaN Testbed research capabilities.

NASA’s Glenn Research Center in Cleveland leads the SCaN Testbed multi-center team, which includes the agency’s Goddard Space Flight Center in Greenbelt, Md.; the Jet Propulsion Laboratory in Pasadena, Calif.; and the Johnson Space Center in Houston. General Dynamics of Scottsdale, Ariz., and Harris Corp. of Melbourne, Fla., developed SDRs under cooperative agreements with NASA. The SCaN Program Office in the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington manages, oversees and funds the Testbed.

For more information about the SCaN Testbed, including opportunities for academia, government agencies and industry to participate, please visit: http://go.nasa.gov/QLp37U

For more information about SCaN, please visit: http://www.nasa.gov/SCaN

http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed/Candidate/

http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed/Candidate/documents/GRC-CONN-PLAN-5006%20Rev%20A%20-%20Experimenter’s%20Handbook.pdf

http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed/Candidate/documents/GRC-CONN-DOC-5022%20Rev%20A%20-%20SCAN%20Testbed%20Flight%20and%20Ground%20System%20Description.pdf

http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed/Candidate/documents/Acronyms.pdf

http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed/Candidate/documents/Ops%20Con%20for%20SCAN%20Testbed_SBIR.ppt

http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed/Candidate/documents/NASA_TM-2008-215445_STRS%20Definitions%20and%20Acronyms.pdf

http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed/Candidate/documents/STRS-AR-00002_Rel_1.02_STRS_Architecture.1.pdf

http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed/Candidate/documents/NASA_TP_2008-214813_STRS_Concepts&Analysis.pdf

031014 SpaceX CRS 3Z1 031014 SpaceX CRS 3Z 031014 SpaceX CRS 3Y 031014 SpaceX CRS 3X 031014 SpaceX CRS 3W 031014 SpaceX CRS 3V 031014 SpaceX CRS 3U 031014 SpaceX CRS 3T 031014 SpaceX CRS 3S 031014 SpaceX CRS 3R 031014 SpaceX CRS 3Q 031014 SpaceX CRS 3P 031014 SpaceX CRS 3O 031014 SpaceX CRS 3N 031014 SpaceX CRS 3M scan_testbed_2 031014 SpaceX CRS 3L

Advertisements